

Application of the credibility principle in reinsurance pricing

David Raich Angela Wünsche

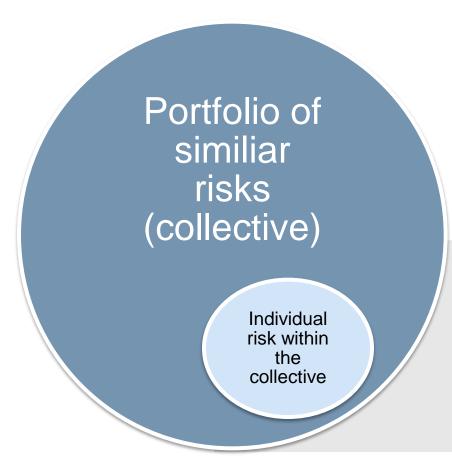
Bahnhofskolloquium, Zurich 11 February 2013

Agenda

- 1. Introduction into credibility theory
- 2. Some maths
- 3. Credibility for reinsurance pricing
- 4. Application method used for MTPL
- 5. Vision

Introduction

Introduction



Initial situation:

- Comprehensive information available for the collective (e.g. solid loss history or more)
- ➤ Limited data history available for individual risk

GOAL:

Make use of all (relevant) available information in order to get best estimate for the individual premium

Introduction Collective vs individual information

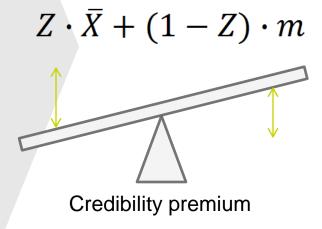
Individual information

Collective information

Data stems from individual risk Different charateristics than individual risk

Contains significant random element

Statistical significance



Introduction History of credibility theory

Limited Fluctuation CT

Greatest Accuracy CT

- Based on central limit theorem
- Originally a "full or zerocredibility" method
- ➤ Parameters in partial model introduced later calibrated according to actuarial judgement

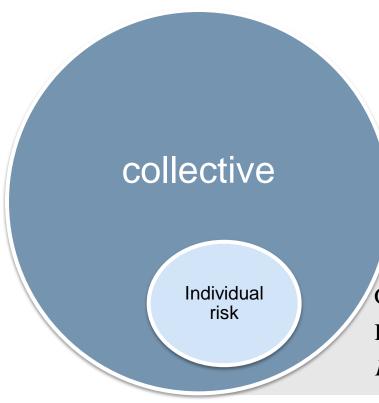
- ➤ Heavily based on Bayesian statistics
- ➤ "Best premium to charge"approach
- Results in stable and responsive estimator

Stability-oriented approach

Precision-oriented approach

Some maths

Mathematical Formulation



$$\mathbf{F} = \{ F_{\mathcal{G}} \mid \mathcal{G} \in \Theta \}$$

Family of distributions indexed by risk profile ϑ

$$H[\Theta] = E[X \mid \Theta]$$

Individual premium

$$\mu = E[X] = E_{\Theta}(E[X \mid \Theta])$$

Collective premium

GOAL:

Given observations $x_1, ..., x_n$ for an individual risk F_g Find a good estimator for the individual premium $H(g) = E[X_{n+1}/g]$

Main results – Bayesian estimator

 $\pi(\mathcal{G})$

A priori density function of risk profile

$$f(x_1,...,x_n \mid \mathcal{G})$$

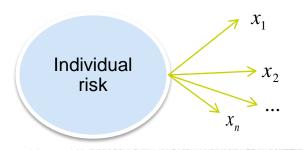
Conditional density function of losses

$$H(\mathcal{Y}) = \int x \cdot f(x \mid \mathcal{Y}) dx$$

Individual Premium

$$f(x_1,...,x_n,\vartheta)$$

Joint density function



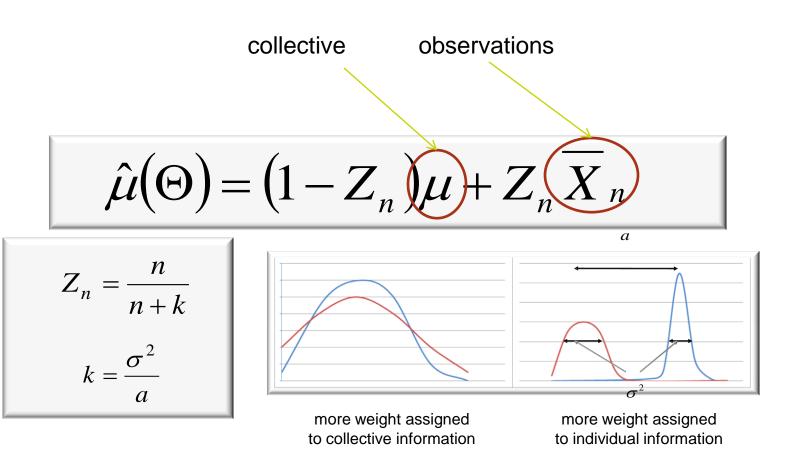
$$\pi(\boldsymbol{\vartheta} \mid \mathbf{x})$$

A posteriori pdf of risk profile

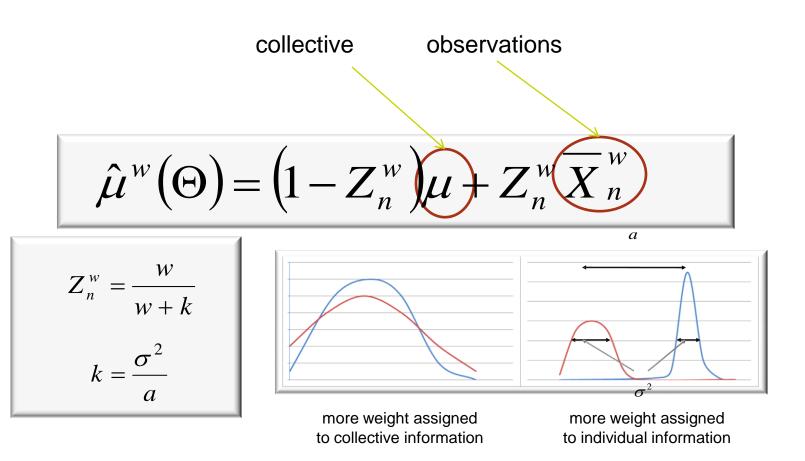
$$P(B) = \sum_{i} P(B \mid A_{i}) \cdot P(A_{i})$$

$$= \mathbf{X} = \mathbf{H} P(A,B) = P(A \mid B) \cdot P(B)$$

Main results – Bühlmann model



Main results – Bühlmann-Straub model



Credibility for reinsurance pricing

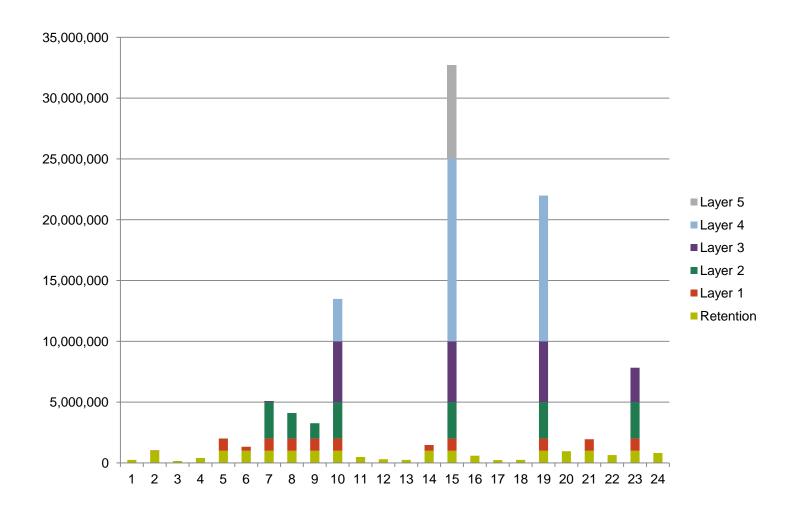
General comments

What problems do we face in reinsurance pricing?

- Pricing XL business for motor
- Usually data are only given back for the last 10 years
- Need to project losses to ultimate, where development can take much longer than 10 years
- Data are only available excess a threshold
- Hence scarce data, which may be insufficient to price a client based on experience
- We want to make use of all available data in market and weight a client against the market

naturally a application field of credibility

General comments



Challenges

Challenges:

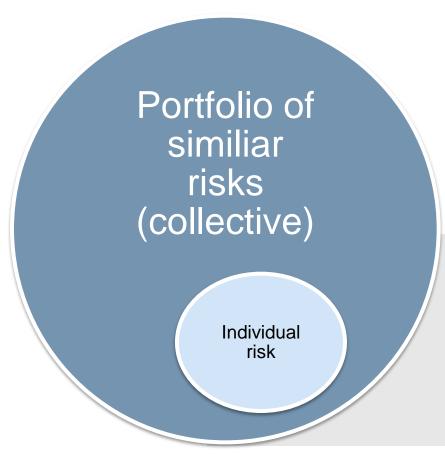
- Choice of appropriate portfolio
- Pure niche portfolios still require individual treatment
- Pricing of a layer 3 m xs 2 m is different than pricing ill xs 25 m
- Credibility weight needs to be calculated in dependency of claims size
- Credibility applied to frequency / severity or rate?
- Parameter uncertainty?
- Which is the appropriate exposure measure?

Requirements for credibility approach

- Produce reasonable results i.e. increase precision
- Ensure stability and responsiveness
- One model for all layers
- Easy to explain
- Ensure consistent approach within one market
- Application still allows for underwriting judgement

"Any credibility procedure requires the actuary to exercise informed judgment, using relevant information. The use of credibility procedures is not always a precise mathematical process" (Actuarial Standards board)

Credibility for reinsurance XoL pricing



Initial situation:

- Comprehensive information available for the collective (e.g. solid loss history or more)
- Limited data history available for individual risk

GOAL:

Make use of all (relevant) available information in order to get best estimate for the individual premium

Credibility for reinsurance XoL pricing

Initial situation:

- ➤ Net Market rate available (=Collective information)
- Limited loss history available for individual portfolio

GOAL:

Make use of both information in order to get good estimate for the individual net rate

Application – Method used for MTPL

Theoretical framework – Compound Gamma-Poisson

$$f_{N}(n|\theta) = \frac{\theta^{n}e^{-\theta}}{n!}$$

$$f_{\Theta}(\theta) = \frac{b^{a}\theta^{a-1}e^{-b\theta}}{\Gamma(a)}$$

The unconditional distribution of N is negative binomial with parameter(a, b /(1+b)).

$$=> \hat{\mu}(\Theta_l) = (1-Z_l)\overline{N}^{w,Z} + Z_l\overline{N}_l^w$$

$$Z_l = \frac{w_l}{w_l+b}$$

Estimation of the parameters-Compound Gamma model

Estimation of parameter b:

$$E[\Theta] = a/b = \frac{1}{m} \sum_{l=1}^{m} \lambda_l$$

$$Var[\Theta] = a/b^2 = \frac{1}{m-1} \sum_{l=1}^{m} (\lambda_l - \overline{\lambda})^2$$

$$=>b=\frac{\overline{\lambda}}{\frac{1}{m-1}\sum_{l=1}^{m}(\lambda_{l}-\overline{\lambda})^{2}}$$

Process needs to be repeated for different thresholds

Estimation of the parameters-Compound Gamma model

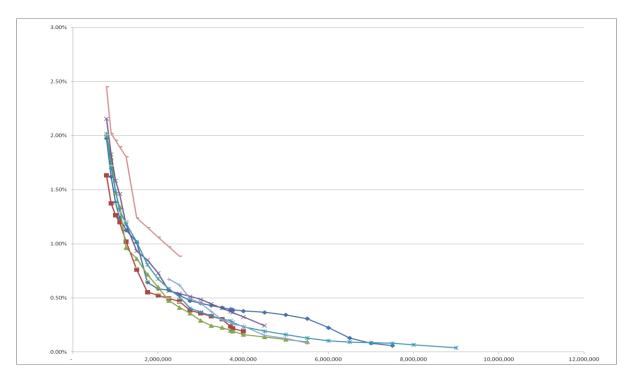
Estimation of parameter b(T):

$$E[\Theta_T] = a(T)/b(T) = \frac{1}{m} \sum_{l=1}^{m} \lambda_l(T)$$

$$\operatorname{Var}\left[\Theta_{T}\right] = a(T)/b(T)^{2} = \frac{1}{m-1} \sum_{l=1}^{m} \left(\lambda_{l}(T) - \overline{\lambda}(T)\right)^{2}$$

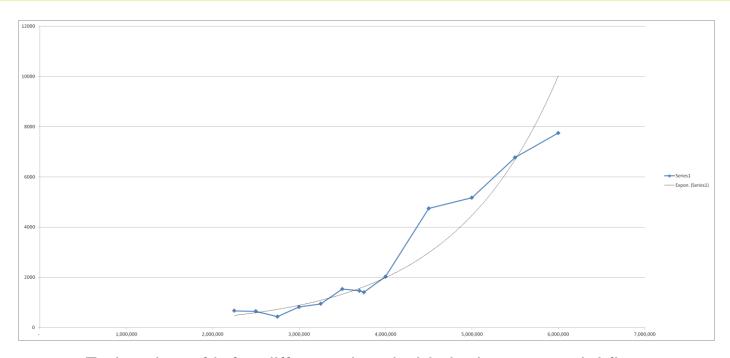
$$=>b(T) = \frac{\overline{\lambda}(T)}{\frac{1}{m-1} \sum_{l=1}^{m} (\lambda_{l}(T) - \overline{\lambda}(T))^{2}}$$

Estimation of the parameters-Frequency of cedents



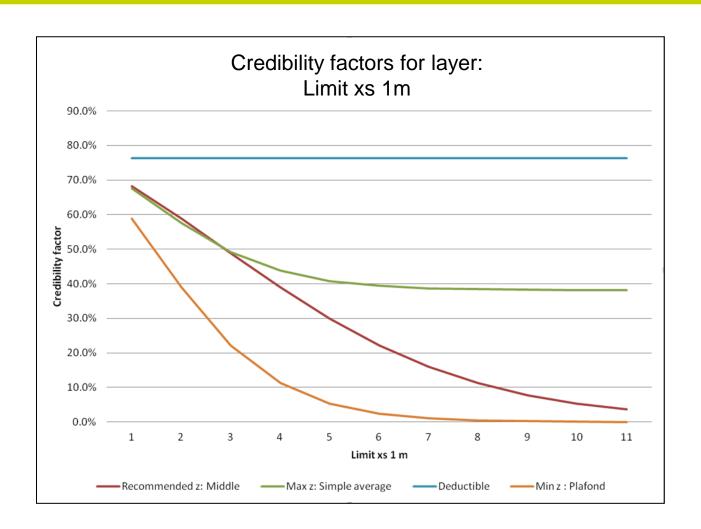
Expected Frequency of cedents @ different thresholds

Estimation of the parameters-Fit b(T)



Estimation of b for different thresholds incl. exponential fit

Application on client example



Status quo

- Where are we?
 - Credibility weight is calculated dependent on claim size and exposure
 - Calibrated on frequencies
 - Applied to the rate
 - Underwriting jugdement is possible, because of the range given for the weight
 - Uncertainty of rate not explicitly taken into account, but within underwriting judgement

Vision

Vision

- Where to go?
 - Application for severity
 - Incorporation of market rate uncertainty
 - Expand application towards loadings (capital intensities)
- Other approaches in actuarial literature:
 - application on loss development factors (Pinot/Gogol)
 - making use of lower layers for upper layers

References

Bühlmann, H., and A. Gisler, A Course in Credibility Theory and its Applications, New York: Springer, 2005.

Cockroft, M., "Bayesian Credibility for Excess-of-Loss Reinsurance," paper presented at the GIRO Conference, 2004.

Parodi, P., and S. Bonche, "Uncertainty-Based Credibility and its Application to Excess-of-Loss Reinsurance," Casualty Actuarial Society *E-Forum, Winter 2008.*

Mashitz, I., and G. Patrik, "Credibility for Treaty Reinsurance Excess Pricing," Casualty Actuarial Society 1990 Discussion Paper Program, pp. 317–368.

Credibility for a Tower of Excess Layers – David R. Clark (2011) http://www.variancejournal.org/issues/05-01/32.pdfubs/dpp/dpp90/90dpp317.pdf

"An Analysis of Excess Loss Development" Pinto & Gogol; *Proceedings of the Casualty Actuarial Society* (PCAS) 1987; Vol LXXIV.2; 227-255.

http://www.casact.org/pubs/proceed/proceed87/87227.pdf

Thank you for your attention